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Abstract
Graph neural networks are widely used in machine
learning applied to chemistry, and in particular for
material science discovery. For crystalline mate-
rials, however, generating graph-based representa-
tion from geometrical information for neural net-
works is not a trivial task. The periodicity of crys-
talline needs efficient implementations to be pro-
cessed in real-time under a massively parallel en-
vironment. With the aim of training graph-based
generative models of new material discovery, we
propose an efficient tool to generate cutoff graphs
and k-nearest-neighbours graphs of periodic struc-
tures within GPU optimization. We provide pyMat-
Graph a Pytorch-compatible framework to gener-
ate graphs in real-time during the training of neural
network architecture. Our tool can update a graph
of a structure, making generative models able to up-
date the geometry and process the updated graph
during the forward propagation on the GPU side.
Our code is publicly available at https://github.com/
aklipf/mat-graph.

1 Introdution
New materials discovery is a fundamental challenge in mate-
rial sciences where high-throughput screening based on ma-
chine learning models is largely employed to obtain materials
with desired properties. Crystalline (crystal) material genera-
tion has recently received considerable attention, e.g. [Xie et
al., 2022; Gibson et al., 2022; Klipfel et al., 2023]. In our
setting, we are interested in generating new crystal materials
for developing new solar panels with a band gap enabling hy-
drolyse. This helps to solve problems related to clean energy
production and storage, which is one of the major challenges
facing our society. It can also be used to produce hydrocar-
bons from CO2, helping to reduce the carbon footprint of hu-
man activities.

From organic chemistry to material science, Graph Neu-
ral Networks (GNN) have received increasing attention in a
variety of tasks such as classification [Schütt et al., 2017;
Jørgensen et al., 2018; Gasteiger et al., 2020b; Gasteiger et
al., 2020a; Chen et al., 2019; Choudhary and DeCost, 2021;
Klicpera et al., 2021] and generation [Satorras et al., 2021;

Xie et al., 2022; Long et al., 2021; Ekström Kelvinius et al.,
2022; Gibson et al., 2022]. Notice that organic molecules
are composed of wide carbon chains with a limited variety
of atoms, while crystal materials are three-dimensional peri-
odic structures composed of a wide variety of chemical bonds
and atoms. The periodic structure of crystals is often repre-
sented as a parallelepiped tiling, a.k.a crystal lattice or unit
cell. While generating graph-based representations of organic
molecules is straightforward, the periodic structure of crys-
tals makes difficult graph processing when training a gen-
erative model, and in particular when a massively parallel
environment is required. More precisely, generative models
may update the geometry of a chemical structure during for-
ward propagation. However, since the graph associated with a
given structure is built from the local environment of atoms, a
modification of the geometry leads to the modifications of the
graph associated with the structure. Consequently, building a
generative model with a dynamic graph is hard to achieve on
a periodic structure compared to organic molecules.

When training graph-based generative models for mate-
rial discovery, cutoff distance is a commonly used technique
[Schütt et al., 2017; Gasteiger et al., 2020b; Jørgensen et al.,
2018]. It designates a relative distance threshold value above
which no interaction between nodes is considered. In the
same vein, [Jørgensen et al., 2018; Chen et al., 2019] suggests
that k-nearest-neighbours (KNN) graphs can also be a good
choice for GNN models. KNN-graph is a type of graph where
all the nodes are connected to the k-nearest nodes. When
processing small molecules, any naive strategy of comput-
ing the interatomic distances is feasible, allowing to compute
KNN or cutoff graph in a short amount of time and reasonable
memory. However, for periodic structures which are infinite,
the search area should be carefully selected to avoid unneces-
sary calculation and memory saturation. In fact, the volume
of the search space expands with the cube of the search radius.
As such, possible graphs should be generated in milliseconds
to be usable in practice during the training process. Moreover,
a periodic structure is represented with a multi-graph where
a given node can share multiple edges with another and with
itself which brings more complexity to the graph generation
process. Finally, for big structures, a processing strategy suit-
able for massively parallel environments should be used in
order to deal with a batch of multiple structures at the same
time.
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Figure 1: Example of a crystal composed of two atoms, atom 0 is
in the centre of the cell and atom 1 is in the bottom left corner. The
edges of the graph Γ1 associated with a material are composed of
the index of a source node, the index of the target node and the
coordinate of the cell of the targeted node.

To address the aforementioned issues, we propose an ef-
ficient tool that solves KNN and cutoff graph generation for
crystalline materials. We provide a compatible implemen-
tation with PyTorch that performs on GPUs1. We used an
approach inspired by the KD-tree search algorithm adapted
for periodic structures and propose a data structure adapted
to massively parallel environments (GPUs) that effectively
keeps track of the KNN of each atom. We empirically show
the benefits of using our tool.

2 Crystallographic Graph Generation
A crystalline structure can be defined with a cloud of atoms
and a repetition pattern that represent periodicity. The rep-
etition pattern is often described as a parallelepiped called a
lattice or a cell. The periodic structure is obtained with the
tiling of the space by the crystal cell. Consequently, a given
atom inside of the cell has multiple positions because of the
tiling in space and the local environment of an atom which
can overlap with adjacent repetition.

2.1 Crystallographic Graph
We follow [Klipfel et al., 2023] to define the graph associated
with a crystal material as an oriented graph where each edge
is represented by triplets containing the index of the source
node, the index of the destination node and the relative cell
coordinate of the destination node. Figure 1 illustrates this
representation. Notice that the definition of graph provided
in [Klipfel et al., 2023] generalizes to most of the graph def-
initions proposed in previous works [Jørgensen et al., 2018;
Chen et al., 2019; Satorras et al., 2021]. We now recall the
formal definition of crystalline structure [Klipfel et al., 2023].

Definition 1. The representation space of featured materials
MF is the disjoint union

∐
n∈NMF

n where:

MF
n =

{
(ρ, x, z) | ρ ∈ GLd(R), x ∈ [0, 1[n×d, z ∈ Fn

}
Chemical materials are represented in M = MN, with
atomic numbers as feature sequence z.

MF
n is an infinite set of triplet ρ, x, z that represents all

possible materials with n atoms. The atomic number has a
chemistry reference, e.g. 1 for hydrogen or 6 for carbon.

1Code available at https://github.com/aklipf/mat-graph

Figure 2: The searching procedure continues while the evaluated
area (in the parallelogram with continuous lines) doesn’t fully over-
lap with the search area (represented as a red circle). The next eval-
uated area (in dotted lines) expends in the direction where the search
area is not yet evaluated.

Definition 2. We call directed 2-graph Γ = (Γ0,Γ1,Γ2) a
triplet of sets together with applications:

• π1 : Γ1 → Γ0 × Γ0, written π1(γ) = (src(γ), tgt(γ))

• π2 : Γ2 → Γ0 × Γ0 × Γ0

We call Γ a directed 1-graph when Γ2 = ∅.

The aforementioned graphs are often called multi-graphs
or hyper-graphs because they generalise 1-graphs to dimen-
sions ≥ 1. They are directed because we do not assume any
symmetry on Γ w.r.t vertice permutations. Recall that π1 and
π2 may not be injective.

Definition 3. Let M = (ρ, x, z) in MF
n be a material and

ci > 0 for 1 ≤ i ≤ n denotes cutoff distances. We define a
directed 2-graph Γ = ΓM,c by the graded components:

• Γ0 = {1, . . . , n}
• Γ1 =

{
(i, j, τ) ∈ Γ0×Γ0×Zd

∣∣ ||ρ(xj−xi+τ)|| < ci
}

• Γ2 =
{
(γ, γ′) ∈ Γ1 × Γ1

∣∣ src(γ) = src(γ′)
}

This graph construction includes many definitions of ma-
terial graphs, making it versatile and usable in most contexts.
This definition includes a graph built from a constant cutoff
distance (i.e. ci is constant), a graph built from k nearest
neighbour or built from chemical properties such as the cova-
lent radii. For more detail, we refer to [Klipfel et al., 2023].

2.2 Generation Process
To handle the periodic nature of crystalline, we adapt our
graph generation process to work in a torus space. To this
end, graph generation is performed by exploring the direct
repetition of a cell where we start by evaluating the adjacent
cell and extend the search area until we find all the edges.
Our graph generation method is built upon two main parts:
a searching algorithm and an ordered stack. Combined, the
generation process follows an iterative process limiting the
RAM usage by splitting the search area. Our generation pro-
cess remains fast since only a few iterations are required,
avoiding useless search areas.

Searching procedure Our search procedure is based on a
classic KD-tree search strategy. As shown in Figure 2, a
search radius is used to represent the area where connected
nodes can exist. On the other side, we expand the explored
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area up to a search radius. As the search radius is defined
with the KNN in the case of a KNN-graph, the search radius
decreases over time when a new area is explored. The search
procedure pseudo-code is given by Algorithm 1.

Algorithm 1 KNN graph generation algorithm
Input:
k: the k nearest connected atoms
ρ: the shape of the lattice of the crystal
x: the position of the nodes inside the lattice
Output: a set of edges

1: dmax
i ←∞

2: border ← (0, 0, 0)
3: Γ1 ← {∅}
4: while any(dmax

i > closest distance(border, ρ)) do
5: extension← next evaluated area(border, dmax

i )
6: γ ← evaluate area(ρ, x, extension)
7: Γ1 ← push nearest(Γ1, γ, k)
8: border ← border + extension
9: dmax

i ← max(i′,j,τ)∈Γ1|i′=i di′jτ
10: end while
11: return Γ1

Ordered stack To keep track of the k closest points already
discovered by our search procedure, we proposed an efficient
data structure to store points. Our ordered stack first concate-
nates new data and then sorts them by distance. After that,
the edges are filtered to keep only the KNN in the case of a
KNN-graph or the edges under a given cutoff distance in the
case of a cutoff-graph.

Algorithm 2 Push edges in and ordered stack
Input:
k: the k shortest edges
Γ1: a list of edges
γ: the list of edges to merge
Output: the list of the k shortest
edges

1: Γ′
1 ← Γ1 ∥ γ

2: Γ′
1 ← sort by distance(Γ′

1)
3: Γ′

1 ← stable sort by source index(Γ′
1)

4: dki ← k nearest distancei(Γ′
1)

5: Γ′
1 ← {(i, j, τ) ∈ Γ′

1|d(i,j,τ) ≤ dki }
6: return Γ′

1

In addition to graph generation, our tool provides addi-
tional functionalities such as:

• Symmetric graph: as some GNN require symmetric
directed graphs to perform specific message-passing
schema, our tool includes a procedure that makes a given
graph symmetric by adding missing edges while guaran-
teeing the uniqueness of the edges.

• Triplets generation: We provide an implementation to
generate triplets composed of two edges sharing the
same source nodes during the run-time. This task is
important because recent works use triplets information

knn cutoff distance
16 32 64 3.0 5.0 8.0

CPU 1029.6 1120.1 1669.3 968.3 1214.4 2829.9
GPU 25.2 25.8 37.7 20.5 34.0 57.8
batch 0.053 0.055 0.080 0.043 0.072 0.123

Table 1: Processing time of 119701 filtered structures in seconds for
CPU, GPU and Batch configurations. KNN denotes the number of
neighbours in the graph while the cutoff distance defines a radius (in
Angstrom) inside which all atoms are connected. Batch corresponds
to the generation time for a single batch of 256 structures.

batch size 32 64 128 256 512

batch (ms) 22.0 24.7 35.0 59.3 97.5
total (s) 82.2 46.2 32.7 27.7 22.8

RAM (Mo) 565.6 1079.6 2300.1 2991.0 4811.2

Table 2: Batch time corresponds to the building time of the graph for
a single batch. Total time refers to the time required to process the
entire dataset. RAM to the average GPU RAM used by our graph
generation tool.

during inference [Klipfel et al., 2023; Xie et al., 2022;
Klicpera et al., 2021].

3 Performance Evaluation
To evaluate the performance of our tool, we conducted ex-
periments on Materials project [Jain et al., 2013] which is
a dataset composed of 133420 crystalline materials studied
with ab inito calculation. We considered the same setting as
[Xie et al., 2022] where structures composed of more than 64
atoms are removed since they are in general considered out-
liers. The experiments are performed on an Nvidia quadro
RTX 8000 GPU.

CPU vs GPU We compared the time required to process
all the structures for our tool with and without GPU opti-
mization. We used a fixed batch size of 256 structures and
generated the structures for the 16, the 32 and the 64 nearest
neighbours of atoms. As shown in table 1, the KNN-graph
generated on GPU is up to 40 times faster than an equivalent
CPU library.

Complexity, inference time and RAM usage To check the
time complexity of our method, we compare the generation
time of one batch with various KNN settings in Table 1 and
batch size in Table 2). Experiments on batch size have been
performed for a KNN-graph with 32 neighbours.

4 Conclusion
We propose an efficient tool to convert crystalline materials
into graphs. Our library allows for reducing the time spent
during prepossessing. More importantly, the graph conver-
sion is quick enough to be used during the training process
without the prepossessing step and updates the graph while
updating the geometry of a given structure. Our tool opens
new possibilities in generative networks for material science.
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